Tech Field Day

The Independent IT Influencer Event

  • Home
    • The Futurum Group
    • FAQ
    • Staff
  • Sponsors
    • Sponsor List
      • 2025 Sponsors
      • 2024 Sponsors
      • 2023 Sponsors
      • 2022 Sponsors
    • Sponsor Tech Field Day
    • Best of Tech Field Day
    • Results and Metrics
    • Preparing Your Presentation
      • Complete Presentation Guide
      • A Classic Tech Field Day Agenda
      • Field Day Room Setup
      • Presenting to Engineers
  • Delegates
    • Delegate List
      • 2025 Delegates
      • 2024 Delegates
      • 2023 Delegates
      • 2022 Delegates
      • 2021 Delegates
      • 2020 Delegates
      • 2019 Delegates
      • 2018 Delegates
    • Become a Field Day Delegate
    • What Delegates Should Know
  • Events
    • All Events
      • Upcoming
      • Past
    • Field Day
    • Field Day Extra
    • Field Day Exclusive
    • Field Day Experience
    • Field Day Live
    • Field Day Showcase
  • Topics
    • Tech Field Day
    • Cloud Field Day
    • Mobility Field Day
    • Networking Field Day
    • Security Field Day
    • Storage Field Day
  • News
    • Coverage
    • Event News
    • Podcast
  • When autocomplete results are available use up and down arrows to review and enter to go to the desired page. Touch device users, explore by touch or with swipe gestures.
You are here: Home / Videos / Building Big Data AI Applications on Intel Analytics Zoo

Building Big Data AI Applications on Intel Analytics Zoo



AI Field Day 1


This video is part of the appearance, “Intel Presents Analytics Zoo at AI Field Day 1“. It was recorded as part of AI Field Day 1 at 14:00-16:00 on November 19, 2020.


Watch on YouTube
Watch on Vimeo

Jason Dai, Senior Principal Engineer, discusses practical applications of Intel’s Analytics Zoo, an open source software platform for big data AI. This presentation focuses on four applications: Recommendation, time series analysis, computer vision, and natural language processing. His first example is the food recommendation engine used by Burger King, which uses a transformer cross transformer (TxT) model leveraging HDFS, Apache Spark and MXNet, and Ray. Next, Dai discusses how SK Telecom’s time series based network quality prediction solution is able to run up to 6x faster using Analytics Zoo on Intel Xeon and presents a similar use case of wind power prediction using Analytics Zoo by GoldWind, which improved accuracy to 79% with a 4x training speedup. When it comes to computer vision, Dai presents industrial inspection by Midea and KUKA and AI-assisted radiology with Dell EMC. Finally, natural language processing (NLP) is presented, using a chatbot in Microsoft Azure and job recommendation engine in Talroo as examples.

Personnel: Jason Dai


  • Bluesky
  • LinkedIn
  • Mastodon
  • RSS
  • Twitter
  • YouTube

Event Calendar

  • Jun 10-Jun 11 — Tech Field Day Extra at Cisco Live US 2025
  • Jul 9-Jul 10 — Networking Field Day 38
  • Jul 16-Jul 17 — Edge Field Day 4
  • Aug 19-Aug 20 — Tech Field Day Extra at SHARE Cleveland 2025
  • Sep 10-Sep 11 — AI Infrastructure Field Day 3
  • Sep 24-Sep 25 — Security Field Day 14
  • Oct 22-Oct 23 — Cloud Field Day 24
  • Oct 29-Oct 30 — AI Field Day 7

Latest Links

  • Techstrong Gang – May 20, 2025
  • How Nile Is Redefining Campus Networks with Zero Trust
  • Celona Shows How Flexible and Scalable Private Cellular can be!
  • Campus Gateway: The Missing Piece in Large-Scale Enterprise Deployments with Cisco Meraki
  • Powering Qlik Open Lakehouse with Apache Iceberg

Return to top of page

Copyright © 2025 · Genesis Framework · WordPress · Log in